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ABSTRACT

In this paper we discuss a numerical approach for the treatment of optimal shape
problems governed by the Euler equations. In particular, we focus on flows with embedded
shocks. We consider a very simple problem: the design of ,. quasi-one-dimensional Laval
nozzle. We introduce a cost function and a set of Lagrange multipliers to achieve the
minimum. The nature of the resulting costate equations is discussed. A theoretical difficulty
that arises for cases with embedded shocks is pointed out and solved. Finally, some results
are given to illustrate the effectiveness of the method.
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1 Introduction

The physical structure of the complex flows that occur in aerodynamic design can be
predicted by reliable numerical simulations. On the other hand, the increasing capability
of computers to perform even larger calculations radically changes the aerodynamic design
process. Indeed, for engineering purposes, if one can predict performance, it is fundamental
to know which modification of an aerodynamic configuration improves performance.

This question has, of course, been addressed long before the advent of computers which
has led to a broad category of methods known as inverse design. An exhaustive account
of the historical development of these approaches is given in [1]. Here it is suffice to say
that these methods, pioneered by Lighthill [61, require knowledge of a desirable pressure
or velocity distribution. The adequacy of the distribution chosen is dependent on the
experience of the designer; the resulting shape strongly depends on this choice. An original
example of such an approach is found in [3]

The numerical approach that we will use in this paper, lift the dependence on heuristic
choices of the desirable distribution, allowing the imposition of constrains to be satisfied
by the solution found. The numerical simulation of the flow and a numerical optimization
code are coupled. The optimization code calculates the best perturbation to the geometry
to decrease a cost function. The geometry itself is described by a set of shape coefficients.

. The optimization code can be devised in one of several ways. A common approach is
to perturb one shape coefficient at a time and compute the derivative of the cost function
with respect to this coefficient as a finite difference. Although such codes are simple to
devise, the procedure is costly and can introduce large errors. In a further evolution of this
approach, an equation is first calculated for the derivative of the cost function with respect
to the shape coefficient and then solved numerically. An equation must be solved for each
shape coefficient. A recent application of this method to a two-dimensional supersonic
problem is found in [2].

The approach presented in this paper is a classical optimal control method. We will
introduce costate variables (Lagrange multiplier) to achieve a minimum. This method has
been successfully applied in the design of an airfoil in a subsonic potential flow [10].

Here, we consider a flow with embedded shocks where the governing equations are the
Euler equations. We show how to derive an analytical expression of the cost function
derivatives with respect to the shape coefficients. For this purpose, we solve only one set
of costate equations. In [91, some difficulties are outlined, and a method to avoid them
is proposed. In the present approach an optimal shape can be found for problems with
embedded shocks, without additional complications. A careful examination of the structure
of the costate equations suggests a method for integrating them with a robust algorithm
developed for fluid dynamics purposes.

A comparison of optimization-based approaches for aerodynamics design problems is 0

given in [7], although some results for flows with embedded shocks have been questioned
recently in [9].
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2 Problem Statement

We investigate a new method for aerodynamic design and optimization based on the Eu-
ler equations. In order to demonstrate the Ideas of the method, a very simple problem
is considered: the design of a Laval nozzle assuming inviscid, quasi-one-dimensional flow.
The optimization problem consists of finding a set of design variables (in this case shape
parameters) that minimize some cost function, e.g., a desired pressure or velocity distribu-
tion along the centerline and possibly requiring that some side constraints be satisfied. We
attack the optimization problem with the adjoint method. The adjoint method introduces
a new set of equations and unknowns that are solved together with the flow-field equations.
To better understand how to obtain a solution of the adjoint equations, the properties of
these equations are discussed.

Let the extension of the Laval nozzle in physical space be fl = [0, 1]. An energylike
functional denoted by C, is the cost function we want to satisfy. An optimal shape of the
nozzle is reached when we meet the necessary conditions for a minimum of E. Let

E = I (p - p-) 2 dx
2 Jo

where p* is a target pressure distribution along the abscissa x and p is the pressure field
for the present geometry. The choice of the functional does not affect the generality of the
method once the dependence of E with respect to the flow-field variables is determined.
Nevertheless, the choice of the functional itself (e.g., Ip - p* I instead of (p - p*)2 ) can affect
the performance of the optimization algorithm by changing the curvature of the energylike
surface.

In the case of a quasi-one-dimensional flow, if we denote

p = density

u = velocity

e = specific total energy

p = pressure

a = speed of sound

h = height of the channel

-j = specific heat ratio
-v-1

X - -j-
2

then the Euler equations for unsteady flows reduce to

Ut+F,+Q=O (1)

where

U = pu F'= up+ p) upe~
pe (pe + p) (pe +
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= h/h, and p = cp(2e - u2 ). In the following derivation, we use the homogeneity
property

F = A(U)U (2)
where

S= A(U) 
(3)

and
A(U) - '(-y - 3)u2  (3 - 7)u

( 2rUu 3 - 7,ue/p ye/p - 3Iu 2 7,u

The source term Q can be written to display its dependence on U; in fact, the multi-
plication can be carried out to show that

Q = S(u)U (4)

where

S( U) = 6 x _U2 2u #u9 (5)
2u 3 - -Yue/p -ye/p - 3,cu2

The first and the third row of A(U) are proportional to the first and third row of S(U),
respectively. Furthermore because d(pu 2) = -u. dp + 2u. d(pu) and pu2 - -u 2 p+2u. pu,
it follows that S(U) = 8Q/OU.

We refer to the solution of the above equations as the analysis problem. The bound-
ary conditions for this problem must be chosen such that the problem is well posed. In
particular, we will consider the inlet flow with a constant total pressure and entropy, i.e.,
p• = pi,(l + KM2,,"'h-i = Constant, pi,,/prj, = Constant. At the outlet, if the flow is
subsonic, the static pressure is fixed as pout = Constant.

3 Adjoint Formulation for a Shockless Case

The design problem can be thought of as a search for a minimum of a functional under
constrains. Let

=(ar) £ + in AT(FZ + Q)dx (6)

where AT is an arbitrary vector with components (A,(z), A2(X), A3(x)), 0• is the domain
[0, 1], and ai are shape coefficients that define the geometry of the nozzle, for example by
h(a 1 ,x) = E, cjf,(x) with fi(x) a generic function of x. Since in the steady state the
Euler equations must be satisfied everywhere in the domain, the functionals C and C are
identical. If we increase the shape coefficients by eff, then the latter functional will change
by an amount, say, ebC. The other quantities will change in the same way: 0 =3 0 + e/,
p =* p + eý, and U(x) > U(x) + eU(x), where U = ( ,)T. By using eqs.(3) and
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(5), we obtain also F(x) =* F(x) + cA(U)U(x) and Q(x) =:: Q(x) + cS(U)U(x). If we

substitute these relations into eq.(6) and retain only the first-order terms, we obtain

C =/ I I/o rlT ATS(U)Udx
Z = (p - p-)dx + A A (A(U)U]. + S(U)U~dx + I dx (7)

In the above equation, f = (hkh - hh4)/h2 . With the notation ci(x) = (hf,. - hýf,)/h 2 ,
the last integral of eq.(7) can be written as

Ea 1J I cjATS(U)Ud (8)

in which the substitution/3 = 5, &ici is made.
Let us integrate by parts the second integral in eq.(7), with A = A(U) and S = S(U)

we obtain

j AT[(AU)E +" SU]dx = [ATAU]'0- j ATAUdx + SUdx(9)

The first term on the right-hand side of the above equation drops for a suitable choice of
A at the boundaries. The boundary conditions for U are complementary to those for A,
in the sense that ATAU = 0 yields a homogeneous linear system in A whose rank depends
on the number of boundary conditions for U.

For this test case, at the inlet we have

= Constant

which implies that
p= -puii

If the entropy is fixed, then the specific total enthalpy is also constant; therefore,

___ 1 2
(7 -l+ -u = Constant
(-i)p 2

We conclude that 1-•Pl~ 12Fj
[AU]0 = [(Vu, u•,(( +( 12

Hence, the suitable choice at the inlet for A is

A, +I- uA2 + ^P1 ) I- 2 A3 = 0 (10)

At the outlet for a subsonic case with a given po,,t, we obtain

[AU]1 = f1Fu, 2u~iu - u 2ý, [+ 3P + u2] FU- [_ U Irp +U2
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which leads to

7 yP 321
A, +2uA 2 +i + -U A3 = 0

(-y -l)p 2 1

UA2 +[ 7) + U 2]A3 = 0 (1

If the outflow is supersonic, then no boundary conditions are required for U; therefore,

A =0 (12)

identically at the outlet.
If we take boundary conditions (10) and (11) and eq.(9) into account, eq.(7) can be

rewritten as

6L -= J oT -AATA.,, + STA A + OP (p- p*)]dx + 5aij ciATSUd (13)

where Op/MU = Y.-1(u 2, -2u, 2). If we select A such that

op •
- ATA. + STA + O -p(P*) =0 (14)

eq.(13) becomes
81C ~ I.t cjATSU _X•£= = -• a = •Jo -• dx

in which we recognize

" = o # dx (15)

Suppose that the flow field is known, such that all the variables, dependent upon U, are
fixed. If we solve eq.(14) with the appropriate boundary conditions for A and substitute
the results in eq.(15), then we obtain a formulation for the gradient of the Lagrangian. The
problem then is reduced to finding the solution of a linear system of equations in A with
homogeneous boundary conditions. Note that A = 0 is a solution if p = p*, which is a
sufficient condition for .L = 0. If at the minimum p -# p* although the integral in eq.(15) is
0, then in general A # 0. The discussion thus far leads to some basic questions about the
well posedness of the eq.(14) with the boundary conditions given by eqs.(10), (11) or (12)
and about the existence and uniqueness of the solution. To actually determine a solution
of this system, examine eq.(14), embedded in time as

±At - ATA. + STA + O- ( p*)=0 (16)

in which we must choose for the proper sign for the time derivative.
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The matrix AT has the familiar eigenvalues u - a, u and u + a. At the boundaries, if we
choose the positive sign in eq.(16), for each boundary condition there will be an incoming
characteristic, such that the problem is well posed. Another motivation for this choice
is that if we add to eq.(1) the diffusive term, when integrated by parts twice, it would
append to eq.(14) a second derivative term in x with the same sign this term had in the
flow equations. Therefore, if the negative sign in eq.(16) is adopted, then an ill-posed heat
equation would result. In conclusion, note that the costate equation

At-A A,, +TA + -- (p - p*) = 0 (17)

oU

has an upside-down characteristic pattern with respect to the time-dependent flow equation.
If we consider a transonic nozzle, in the throat area, the eigenvalue u - a goes continuously
through zero; the flow undergoes an expansion through a transonic fan. On the other hand,
the behavior of the same family of characteristics for eq.(17) shows a shocklike pattern. The
two characteristic patterns are illustrated in figs.l(a) and l(b).

For a reason that will be clear later, some ambiguous jump conditions for this shock
will be derived. First consider a simple equation of the kind bt - xO, = 0, with 4 = 4(x),
x E [-1, 1], and boundary conditions 0(-1) = 4l, 0(1) = 4b. The characteristics at the
boundaries show that this problem is well posed and independent of the initial conditions,
for a large t, the solution will be a step function b(x) = $j for x E [-1,0[ and O(x) = 0,
for x El0, I1. Note that the jump at zero is solely determined by the boundary conditions
and that the steady solution will be reached for t --+ oo because of the nearly vertical
characteristics next to x = 0.

The structure of the solution to this equation is similar to that underlying eq.(17) for
which the analysis hides somehow this behavior. A solution to eq.(14) can be written in
the form

A(x) = C(x) + [A]H(x - Xth)

where C(x) E C', [A] is the jump at the shock, H(x - xth) is the Heaviside function, and xtM
is the location of the shock for A (i.e., the throat of the nozzle). If we substitute in eq.(14),
because b(x) (which is the Dirac measure of x) is the derivative of H(x) with respect to x,
we obtain at x = Xth

AT[A]b(x --- xth) = 0

in which all the negligible terms have been dropped. Note that the presence of source terms
in eq.(14) does not affect the derivation of the jump conditions.

Finally, because at z = Xth det A = 0, we obtain a nontrivial solution for the system

AT(A] = 0 (18)

which yields only two jump conditions; the third jump condition depends on the boundary
conditions. In this sense this problem has ambiguous jump conditions.

If the only solution of the homogeneous problem associated with eq.(14), i.e.

-- ATA. + STA = 0 (19)
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and its boundary conditions, is A = 0, then the solution with a nonhomogeneous source
term is unique, since eq.(14) is linear. Let us consider a subsonic case, with det A $6 0
everywhere in the domain. A general solution of eq.(19) can be written as

A - Aoefo0(AT)-ISTd,

and, together with boundary conditions (10) and (11), this implies A = 0 on the domain.
In the transonic case, since detA = 0 at X = Xth, we split the problem into two domains,

such that in the subsets [0, Xth[ and IXth, 1], detA 5 0. The solution will be

Asub = Alef0th(AT)-ISTd for x E [0, Xth[

and

= Alefzeh (AT)- STd for z EXth, I]-

Again, if we account for the inlet boundary conditions (10), the jump conditions from
eq.(18), and the outlet boundary conditions (12), then the solution is A = 0.

In summary, we have derived an analytic formulation for the gradient of the Lagrangian
in eq.(6) with respect to the geometry. Furthermore, we have shown that this representation
is unique in the sense discussed above.

4 Costate Equations for a Shock Case

Until now, we have limited our investigation to shockless nozzles to avoid certain difficulties
that we will discuss here. One problem is that eq.(1) and, therefore, eq.(16) are not defined
at the shock. This problem is overcome by extending the solution space of U(x) to a set of
generalized functions, such that eq.(1) will reduce to the Rankine-Hugoniot jumps at the
shock. A more subtle shortcoming is better understood with the aid the following example.

Consider a simple equation of the kind t + (H(x) - 1/2),0., = 0 that is defined, for example,
on S = [-1,1]. The characteristics pattern (fig.2), shows the necessity of some boundary
conditions on both sides of the the discontinuity to ensure the existence of a steady-state
solution, regardless of the boundary conditions at the ends of the domain Q.

Now, eq.(17) can be rewritten to reflect its characteristics pattern

pTAt - DPTAZ + pTSTA + -T -- p*) = 0 (20)

where

P= u a u U+a(e + P) - ua e )+

is the matrix of the right eigenvectors of A(U), and
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u-a 0 0 )

D=(0 u 0
0 0 u+a

At the shock wave, the characteristic that corresponds to the eigenvalue u - a undergoes
a jump in speed of the kind described in the example. If this point is considered inside
the domain of calculation, then some condition is needed to update the solution in time.
A boundary condition is needed at this point to continue the calculation to the left of the
shock wave. We cannot try to derive some boundary conditions for this point, as explained
for the inlet and the outlet. No speculation about the perturbation U at the shock is
possible because a perturbation that is solely dependent on the shape coefficients ai and
the flow equations would be chosen arbitrarily. No other constrains exist. For example,
the application of the Rankine-Hugoniot jumps to U on each side of the shock would be
equivalent to assuming that the shock does not change position regardless of the value of
&i. The integrals in eq.(7) are split in two, and the integration is carried between [0, Xzh[
and ]XAk, 1] as

6,C = bC1 + b54,

where

T .h U+p - p]dbf£1 = [ATAU]h + - .T[-ATA + STA+-"(P - p)]dx

+ z ~. c•ATSU
SE o -' dx (21)

and

642 = [ATAU]', + Jeh -A TA STA + P - p))dx

0iATSU dx (22)

A suitable choice for the Lagrange multiplier is to take A = 0 on both sides of the shock
such that A is continuous. This selection frees us from imposing a condition on U, because
the addendum [ATAU] in eqs.(21) and (22) drops anyway at the shock. At the shock, we
will have three characteristics that deliver the information A = 0 to the left domain, and
one that delivers it to the right.

We have examined also another possible interpretation of eqs.(21) and (22). Assume
that for some perturbation of the shape coefficients ci, the shock properties do not change,
i.e., the jump in total pressure across it, is essentially constant, which will be the case
for a weak shock. If we assume that the total enthalpy is constant, then the field to
pa'formulationthe right of the shock can be regarded as a subsonic nozzle governed by
eq.(17) with boundary conditions (10) and (11). To the left of the shock, the flow behaves
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as a supersonic outlet, where we must impose the proper boundary condition, eq.(12), as
discussed earlier. With this approach, &C, = 0 and 6C 2 = 0 independently at the minimum.

The two approaches presented to handle the shock are not significantly different. In

the numerical calculations that follow, we have implemented the second set of boundary
conditions.

5 Numerical Approach

The flow-field solution is obtained by introducing a discrete grid (x", tk) = (xo + nAx, to +
Ek Atk), where Ax is constant and Atk changes to satisfy the CFL condition. The con-
servative variables U(x) are computed at the cell centers and integrated in time with a
three-stage Runge-Kutta scheme, as explained in [5]. In this implementation, we interpo-
late U(x) to the cell faces by using characteristic differences and a minmod limiter. The
flux derivative in eq.(1) is then computed using an approximate Riemann solver. See [4].
Away from discontinuities, the scheme is second order accurate.

Depending on the case considered, the solutions of the costate eq.(14), are sought as

steady results of eq.(17), with boundary conditions applied as explained in the previous
section. Although eq.(17) is linear, it presents some numerical difficulties because of the
characteristics pattern at the throat and at the shock location. In particular, consider
eq.( 2 0) discretized over the same uniform grid of the analysis problem with spacing Ax. If
we denote by A(.)v the finite increments of the function (.) with respect to the superscripted
variable, we have, at each grid point

pTAtDTAAA- pTŽ( =0 23
AA DpT A + PTSTA + r OP-(p - p*) = 0 (23)

Define the local increment AW = PTAA; with this notation eq.(23) becomes

AwWXl A'X+pTS T OP (24)At -DAX S' psA + P ý-U(p -- p*) = 0. 24

This equation describes the signals that propagate along the characteristics; therefore,
the increment AWX, is one-sided depending on the sign of the corresponding propagation
speed. Note that for this equation it woula be impossible to use a conservative scheme
since no conservation law exists to satisfy. The integration in time is made by explicit time
stepping. The scheme is first-order accurate.

At the throat of the nozzle, u - a = 0 and / = 0; hence, the first row of eq.(24) reduces
to

Azt OU'Pp

The eigenvalue u - a has been shown to vanish at the throat. For a grid point in the
neighborhood of the throat, this singularity can lead to unbounded grows for Lambda,
depending on the nature of the source term in the above equation. Because the other two
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characteristics are nonzero at the throat, this error can degrade the entire calculation. To
avoid this problem, we approximate u - a with its value at the neighboring point on the
side from which the vanishing characteristic propagates.

Since with a Godunov-type solver the shock is resolved with three grid points, we must
decide on which of these to impose the boundary conditions for A. We must consider that
the middle point of the three cells on which the shock is solved, is almost sonic; if the
boundary conditions for A at a subsonic inlet (eq.(10)) were imposed at this grid point,
then the convergence rate to the steady solution would be considerably slower. For this
reason we impose the condition for supersonic outlet A = 0, on the middle grid point,
eliminating it from of the computation.

Another remark should be made in regard to the order of magnitude of the residu-
als of eq.(23), for which we can consider the solution steady. Close to the minimum, the
gradients in eq.(15) are almost zero; nevertheless the optimization algorithm requires a
careful computation of these values, such that in order to consider the time-dependent so-
lution converged, the residuals must be some orders of magnitude smaller than the gradient
components.

In the results that follow, we used a representation of the nozzle geometry defined by
h = a, X +- a 2 /X + a3, where X = X + 10-3; this representation allows two independent
design variables because 8 = he/h.

In this work, wc do not address the methods to accelerate the numerical scheme to
obtain an optimal shape; the strategy used to achieve the minimum of the functional is
straightforward:

1. Start with a first guess for the shape coefficients.

2. Solve the flow equation.

3. Solve the costate equation with the values computed in step 2 for the flow field.

4. Update the shape coefficient with a gradient-based criterion.

5. Restart the procedure from step 2 until the gradient is zero.

To update the shape coefficients a BFGS algorithm was used. See [8]. In some cases,
as we will discuss, we used an inefficient, but robust, algorithm that simply makes a line
search for a zero of the gradient.

6 Discussion of the Results and Conclusions

The values for the functional e, computed with an analytical solution of eq.(1), are shown
in fig.(3). The numerical values of the analytical solution are computed on the same grid
presented above; then, the functional is computed by a trapezoidal approximation. The
discrete functional, which is a result of the trapezoidal integration, shows some disconti-
nuities and a local minimum that disappears as the number of grid points increases. As
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the mesh is refined, the number of the discontinuities increases, while the jumps become
smaller.

Note that if the dependence of the geometry on the shape coefficients is smooth, then
the functional

8'6 _ I ( p*)dx

is always defined with the assumption that 8p/Oac is defined everywhere except at a finite
number of points. This assumption is reasonable because the solution of eq.(1) changes
smoothly with the geometry. For this reason, even if no certainty exists that the solution
depends monotonically on the shape coefficients, this behavior can be the interpreted in
this way. Suppose that the integrand of the functional can be represented by a simple
rectangular function. If in attaining the minimum the area under the curve decreases and its
"height" increases, the functional will eventually increase before the edges of the rectangle
pass another grid point, because the mesh resolution is not sufficient. The functional will
exhibit a local minimum and a subsequent discontinuity.

A method that derives a formulation for the gradient of E from a discrete approximation
of the functional will obtain meaningless solutions as a result of the discontinuities of the
discrete functional, such that no optimization algorithm alone could anyway get to the
minimum. In the present formulation, an approximate representation of the analytical
gradient of the functional is derived. For this reason, the approximation of the analytical
gradient will be, at most, affected by discontinuities due to the discretization and will be
always monotonic (if the analytical functional does not change curvature) and bounded. See
fig.4. In figs.5 and 6, we present two sets of results in which the target pressure distribution
was generated with the same h(x) that was used in the optimization procedure. In fig.5,
the target pressure distribution is obtained starting from a subsonic first guess. This result
shows the effectiveness of the method. Fig.6 shows that we can achieve the optimum from
both sides of the discontinuity.

In general, when p*(x) is fixed, the minimum of 6 is reached for different values of the
shape coefficient ai. These different values depend on whether one considers the analytical
or the discretized functional, even if the results are converged on the grid. If the target
solution can be attained exactly, then both values coincide. The gradient calculated after
the proposed derivation, will still depend on the discretization through the nonhomogeneous
term in eq.(14). In fig.7, we show, for a case in which P cannot be reached exactly, that
the distance between the two minima becomes approximately half when the grid resolution
is doubled. This result supports the hypothesis that the minimum calculated through the
analytical gradient will indefinitely approach to the actual minimum as the grid is refined.

In conclusion, a method has been presented to calculate the gradient components of a
generic functional, in which (regardless of the number of the shape coefficients) only one
linear costate equation must be solved. The minimum computed in this way differs from
the minimum of the discrete functional; however these minima indefinitely approach as the
grid is refined.
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Figure 1: Characteristic patterns. (a) Transonic expansion. (b) Correspondent shocklike

structure for costate equations.
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Figure 2: Characteristic pattern for ft + [H(x) - 1/2]4P = 0. Boundary conditions are

needed on both sides of discontinuity.
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functional has been calculated with trapezoidal approximation. (a) Solution distributed
over 20 grid points. (b) Solution distributed over 80 grid points.
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Figure 4: Result shown is obtained with h(x) = aIX + 0.3/X + 10. For each value of a,
. :w equation is solved by a Godunov like scheme, and gradient is calculated as proposed

in this paper. Each time the shock goes through grid point, discretized functional does
not have a monotonic derivative; gradient has discontinuities, but is still monotonic. (a)
Functional. (b) Gradient.
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algorithm used is BFGS. Starting value of the functional is of order 10-. At minimum it
is of order 10-. Gradient components are of order 10-12 at minimum.
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of order 10.. Gradient components are of order 10-12 at minimum.
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